Maine Environmental Laboratory

One Main Street, Yarmouth, ME 04096 Tel.: 207-846-6569 FAX: 207-846-9066 Email: melab@mel-lab.com

Report of Analyses

Report Prepared for:

Carol White C. A. White & Associates 1 Main Street Yarmouth, ME 04096

Report Information:

Batch ID: CAW 13089
Report ID: 13089-220908-1303
Date of Issue: September 8, 2022

The complete report consists of the following parts:

Maine Environmental Laboratory Chain of Custody form Alpha Analytical report

REPORT NARRATIVE:

Enclosed are results of the analyses for your samples as received by the laboratory. Results are for the exclusive use of the client named on the report and will not be released to a third party without written consent. This report shall not be reproduced except in full without the written consent of the laboratory.

Maine Environmental Laboratory is accredited by the States of Maine (Cert. #ME00028) and New Hampshire (NH ELAP) (Cert. #2031) and is TNI/NELAP accredited. Please refer to our website www.maineenvironmentallaboratory.com for a copy of our Maine and NH ELAP certificates and accredited parameters. When a subcontracted laboratory is listed above, the data produced is by a Maine accredited laboratory accredited for the fields of testing performed.

Unless otherwise noted:

- Samples were received in acceptable condition and analyzed within method hold times.
- Soils, sediment, solids and tissues are reported on dry weight basis. Wipes are reported on an "as received" basis.
- All quality control data demonstrated acceptable limits.
- The results reported herein conform to the 2009 TNI standards where applicable.
- Analysis of solids for pH, flash point, ignitability, paint filter, corrosivity, alkalinity, conductivity and specific gravity are reported on an "as received" basis.
- Results for "immediate" field parameters tested at the lab such as pH were run outside of the EPA-recommended hold time.
- %RPD is not calculated when the native sample concentration is below 5 x LOQ.

DEFINITIONS:

LOQ / RL - The Limit of Quantitation / Reporting Limit is the minimum level for reporting quantitative data.

LOD / MDL - The Limit of Detection / Method Detection Limit is the minimum level for reporting estimated data.

J - Data reported between the Limit of Quantitation and Limit of Detection is J-flagged as "estimated."

ND or U - Not detected below the LOD / MDL

- B Detected in QC blank
- S Detection Limits increased due to sample matrix
- 4X Native sample concentration was greater than 4 times the spike concentration so the spike added could not be distinguished from the native concentration.
- % Rec Percent Recovery; RPD Relative Percent Difference
- D Duplicate sample
- R Reanalysis

This report has been reviewed and authorized by Jacquelyn R. Villinski, Laboratory Director:

Jacquelyn R. Villinski

Maine Environmental Laboratory - Chain of Custody	Analyses	1 1 1 2 c c c
46-65		Delivered by:
Email: melab@mel-lab.com		,
Project Manager Carol White 207-749-6906 Carol White maire @ gwint		C. W.
	3	Turnaround Request:
Chebeague Island School MEDOCO185	-25 53	Standard
Address 14 School House Road	List	Priority
Project Name Chebeaque Island School Carol White	: Full	
Sample Identification Container Filtration (Yes or No) Sample Identification Container (Yes or No)	PFAS	Laboratory Identification/ Subcontractor
Cheberague Island School-EP 2 P no DW X Amm. Acetate 6-20-4 16:36	×	Alpha
2 P no PFAS-free H2O Amm. Acetate	×	808887003
analyze both sample		
0		
- 1		
Received in hold time (Ves no N/A Custody seal present yes (C)	8	caushitemaine@qui.net
Received in good condition (yes) no N/A	200	Report sent to state)
Temp. Blank °C 6 / Frozen ice packs	DWP Compliance: Yes No ((Deboit selli to state)
Samples received preserved (responsent to state)	- 11	
Relinquished by Sampler: Date lime Reversion of the Property o		
Relinquished by:		
Received by Laboratory 8/22 8:02	aboratory the let m	Terms and Conditions.
It is the client's responsibility to check the chain for accuracy prior to relinquishing samples. By executing this COC, the client has been and by the control of the client has been and by the cont	Interior is a series of the se	

ANALYTICAL REPORT

Lab Number: L2246334

Client: Maine Environmental Labs

> One Main Street Yarmouth, ME 04096

ATTN: Jackie Villinski Phone: (207) 846-6569 Project Name: CAW 13089

Project Number: Not Specified

Report Date: 09/01/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: CAW 13089
Project Number: Not Specified

Lab Number: L2246334 **Report Date:** 09/01/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2246334-01	CHEBEAGUE ISLAND SCHOOL-EP	DW	Not Specified	08/20/22 16:30	08/25/22
L2246334-02	FIELD BLANK	DW	Not Specified	08/20/22 16:30	08/25/22

Project Name:CAW 13089Lab Number:L2246334Project Number:Not SpecifiedReport Date:09/01/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

ashly Boucher Ashley Boucher

Date: 09/01/22

ORGANICS

SEMIVOLATILES

MEL Combined Report Page 8 of 27 **Project Name:** CAW 13089 Lab Number: L2246334

Project Number: Not Specified **Report Date:** 09/01/22

SAMPLE RESULTS

Lab ID: L2246334-01 Date Collected: 08/20/22 16:30

Date Received: Client ID: CHEBEAGUE ISLAND SCHOOL-EP 08/25/22

Sample Location: Not Specified Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 533 Matrix: Dw

Extraction Date: 08/31/22 20:12 136,533 Analytical Method:

Analyst: AC

09/01/22 06:33

ND = None Detected

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 533 - Mar	nsfield Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		1
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.00		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		1
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND		ng/l	2.00		1
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.00		1
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	2.00		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		1
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxyl-Propanoic Acid (HFPO-DA)	ND		ng/l	2.00		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		1
PFAS, Total (6)	ND		ng/l	2.00		1

09/01/22

MEL Combined Report Page 9 of 27 **Project Name:** CAW 13089 Lab Number: L2246334

Project Number: Not Specified

SAMPLE RESULTS

Date Collected:

Report Date:

Lab ID: L2246334-01 08/20/22 16:30

Date Received: Client ID: CHEBEAGUE ISLAND SCHOOL-EP 08/25/22 Sample Location: Field Prep: Not Specified Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	75	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	75	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	115	50-200
H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	103	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	67	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	69	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	113	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	79	50-200
H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	127	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	90	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	121	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	93	50-200
H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	151	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	93	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	102	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid M3HFPO-DA)	62	50-200

MEL Combined Report Page 10 of 27 **Project Name:** CAW 13089

Not Specified

Report Date:

Lab Number:

Date Collected:

L2246334

08/20/22 16:30

Project Number:

09/01/22

SAMPLE RESULTS

Lab ID: L2246334-02

FIELD BLANK Not Specified

Date Received: 08/25/22 Field Prep: Not Specified

Sample Depth:

Sample Location:

Client ID:

Matrix: Dw

Analytical Method: 136,533

Analytical Date: 09/01/22 06:50

Analyst: AC Extraction Method: EPA 533

Extraction Date: 08/31/22 20:12

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 533 - Ma	ansfield Lab						
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		1	
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.00		1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		1	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND		ng/l	2.00		1	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.00		1	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.00		1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	2.00		1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		1	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		1	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxyl-Propanoic Acid (HFPO-DA)	ND		ng/l	2.00		1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		1	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		1	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		1	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00		1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		1	
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		1	
PFAS, Total (6)	ND		ng/l	2.00		1	

MEL Combined Report Page 11 of 27 **Project Name:** CAW 13089 Lab Number: L2246334

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 08/20/22 16:30

Report Date:

Lab ID: L2246334-02 Date Received: Client ID: 08/25/22 FIELD BLANK Sample Location: Field Prep: Not Specified

Not Specified

09/01/22

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	115	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	108	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	119	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	100	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	103	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	103	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	120	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	112	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	131	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	120	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	112	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	120	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	148	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	112	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	108	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	101	50-200

Project Name: CAW 13089
Project Number: Not Specified

Lab Number: L2246334 **Report Date:** 09/01/22

Method Blank Analysis Batch Quality Control

Analytical Method: 136,533 Analytical Date: 09/01/22 06:16

Analyst: AC

Extraction Method: EPA 533

Extraction Date: 08/31/22 20:12

arameter	Result	Qualifier	Units	RL	I	MDL
erfluorinated Alkyl Acids by EPA 53	3 - Mansfi	eld Lab for s	sample(s):	01-02	Batch:	WG1682056-1
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.00		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		
Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND		ng/l	2.00		
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.00		
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	I ND		ng/l	2.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPC DA)	ND)-		ng/l	2.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	l ND		ng/l	2.00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		

Project Number:

Project Name: CAW 13089

Not Specified Report Date:

Report Date: 09/01/22

Lab Number:

Method Blank Analysis
Batch Quality Control

Analytical Method: 136,533

Analytical Date: 09/01/22 06:16

Analyst: AC

Extraction Method: EPA 533
Extraction Date: 08/31/22 20:12

L2246334

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab for sample(s):
 01-02
 Batch:
 WG1682056-1

 PFAS, Total (6)
 ND
 ng/l
 2.00
 -

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	92	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	92	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	111	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	94	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	91	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	110	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	102	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	122	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	102	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	107	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	119	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	134	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	113	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	113	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	86	50-200

Project Number:

Lab Control Sample Analysis Batch Quality Control

Project Name: CAW 13089

Not Specified

Lab Number: L2246334

Report Date: 09/01/22

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 533 - M	ansfield Lab Assoc	ciated sample(s): 01-02 E	atch: WG1682056-2		
Perfluorobutanoic Acid (PFBA)	99	-	70-130	-	30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	100	-	70-130	-	30
Perfluoropentanoic Acid (PFPeA)	104	-	70-130	-	30
Perfluorobutanesulfonic Acid (PFBS)	103	-	70-130	-	30
Perfluoro-4-Methoxybutanoic Acid	99	-	70-130	-	30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	108	-	70-130	-	30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	82	-	70-130	-	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	122	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	102	-	70-130	-	30
Perfluoropentanesulfonic Acid (PFPeS)	99	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	101	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	101	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	98	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid	82	-	70-130	-	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	111	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	107	-	70-130	-	30
Perfluoroheptanesulfonic Acid (PFHpS)	105	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	104	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	99	-	70-130	-	30
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	106	-	70-130	-	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	109	-	70-130	-	30

Lab Control Sample Analysis Batch Quality Control

Project Name: CAW 13089

Lab Number: L2246334

Project Number: Not Specified

Report Date: 09/01/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 533 - Ma	ansfield Lab Assoc	ciated sample(s): 01-02 Batcl	n: WG16	82056-2				
Perfluorodecanoic Acid (PFDA)	113		-		70-130	-		30	
Perfluoroundecanoic Acid (PFUnA)	106		-		70-130	-		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	104		-		70-130	-		30	
Perfluorododecanoic Acid (PFDoA)	108		-		70-130	-		30	

	LCS		LCSD		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	74				50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	76				50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	114				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	106				50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	79				50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	88				50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	114				50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	96				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	120				50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	106				50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	116				50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	112				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	146				50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	109				50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	115				50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	72				50-200

Matrix Spike Analysis Batch Quality Control

Project Name: CAW 13089
Project Number: Not Specified

Lab Number:

L2246334

Report Date:

09/01/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found		Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by E CHEBEAGUE ISLAND SCHOOL		nsfield Lab	Associated s	sample(s): 01-02	QC Batch ID: V	VG1682056-3	QC Sample: L2246	334-01	Client ID:
Perfluorobutanoic Acid (PFBA)	ND	39.4	38.9	99	-	-	70-130	-	30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND	39.4	41.2	104	-	-	70-130	-	30
Perfluoropentanoic Acid (PFPeA)	ND	39.4	41.0	104	-	-	70-130	-	30
Perfluorobutanesulfonic Acid (PFBS)	ND	35	34.9	100	-	-	70-130	-	30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND	39.4	38.1	97	-	-	70-130	-	30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND	35.2	39.0	111	-	-	70-130	-	30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND	39.4	31.6	80	-	-	70-130	-	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	37	42.6	115	-	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	ND	39.4	38.3	97	-	-	70-130	-	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	37.1	37.0	100	-	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	39.4	40.0	101	-	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	ND	39.4	43.0	109	-	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	36	34.0	94	-	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	37.2	36.7	99	-	-	70-130	-	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	37.5	37.3	99	-	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	ND	39.4	44.2	112	-	-	70-130	-	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	37.6	42.1	112	-	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	ND	39.4	43.4	110	-	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	ND	36.6	37.4	102	-	-	70-130	-	30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	36.8	39.2	106	-	-	70-130	-	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	37.9	40.7	107	-	-	70-130	-	30

Matrix Spike Analysis Batch Quality Control

Project Name: CAW 13089
Project Number: Not Specified

Lab Number:

L2246334

Report Date:

09/01/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by E CHEBEAGUE ISLAND SCHO		nsfield Lab	Associated s	sample(s): 01-02	QC Bato	ch ID: WG	1682056-3	QC San	nple: L2246	334-01	Client	ID:
Perfluorodecanoic Acid (PFDA)	ND	39.4	41.5	105		-	-		70-130	-		30
Perfluoroundecanoic Acid (PFUnA)	ND	39.4	42.5	108		-	-		70-130	-		30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	37.2	40.1	108		-	-		70-130	-		30
Perfluorododecanoic Acid (PFDoA)	ND	39.4	43.4	110		-	-		70-130	-		30

	MS		MS	SD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	141				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	101				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	125				50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	84				50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	103				50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	113				50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	94				50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	89				50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	112				50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	103				50-200
Perfluoro[13C4]Butanoic Acid (MPFBA)	97				50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	97				50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	103				50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	99				50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	107				50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	112				50-200

Lab Duplicate Analysis Batch Quality Control

Project Name: CAW 13089
Project Number: Not Specified

Lab Number: L2246334

Report Date: 09/01/22

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 533 - Mansfield	Lab Associated sample(s):	01-02 QC Batch ID:	WG1682056-4	QC Sam	ple: L2246568-01 Client ID:
Perfluorobutanoic Acid (PFBA)	ND	ND	ng/l	NC	30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND	ND	ng/l	NC	30
Perfluoropentanoic Acid (PFPeA)	ND	ND	ng/l	NC	30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/l	NC	30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND	ND	ng/l	NC	30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND	ND	ng/l	NC	30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND	ND	ng/l	NC	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/l	NC	30
Perfluorohexanoic Acid (PFHxA)	ND	ND	ng/l	NC	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/l	NC	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/l	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/l	NC	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	ND	ND	ng/l	NC	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/l	NC	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/l	NC	30
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	30

11-Chloroeicosafluoro-3-Oxaundecane-1-

Sulfonic Acid (11CI-PF3OUdS)
Perfluorododecanoic Acid (PFDoA)

Lab Duplicate Analysis Batch Quality Control

Project Name: CAW 13089
Project Number: Not Specified

ND

ND

Lab Number:

L2246334

Report Date: 09/01/22

30

30

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by EPA 533 - NDUP Sample	Mansfield Lab Associated sample(s):	01-02 QC Batch ID:	WG1682056-4	QC Sam	ole: L2246	568-01 Client ID:
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC		30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC		30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC		30

ND

ND

ng/l

ng/l

NC

NC

			Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier %Recovery	Qualifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	109	110	50-200	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	103	104	50-200	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	106	107	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	104	108	50-200	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	99	102	50-200	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101	104	50-200	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	108	108	50-200	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	105	106	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	120	113	50-200	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	121	115	50-200	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	102	103	50-200	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	116	118	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	127	138	50-200	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	107	110	50-200	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	110	110	50-200	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	93	92	50-200	

MEL Combined Report Page 20 of 27 **Project Name:** CAW 13089 Lab Number: L2246334

Project Number: Not Specified **Report Date:** 09/01/22

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2246334-01A	Plastic 250ml Ammonium Acetate preserved	Α	NA		3.1	Υ	Absent		A2-ME-533(28)
L2246334-01B	Plastic 250ml Ammonium Acetate preserved	Α	NA		3.1	Υ	Absent		A2-ME-533(28)
L2246334-02A	Plastic 250ml Ammonium Acetate preserved	Α	NA		3.1	Υ	Absent		A2-ME-533(28)

Serial_No:09012212:29

Serial_No:09012212:29 **Lab Number:** L2246

Project Number:

Report Date: 09/01/22

L2246334

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6
	· · · - · · ·	.5.7.2 55 6

Project Name:CAW 13089Lab Number:L2246334Project Number:Not SpecifiedReport Date:09/01/22

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: CAW 13089 Lab Number: L2246334
Project Number: Not Specified Report Date: 09/01/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- ${\bf J} \qquad \hbox{-Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs)}.$
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Name:CAW 13089Lab Number:L2246334Project Number:Not SpecifiedReport Date:09/01/22

Data Qualifiers

- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

MEL Combined Report Page 25 of 27

Project Name:CAW 13089Lab Number:L2246334Project Number:Not SpecifiedReport Date:09/01/22

REFERENCES

Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 533, EPA Document 815-B-19-020, November 2019.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

MEL Combined Report Page 26 of 27 **Alpha Analytical, Inc.**

Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:09012212:29

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

8	One Main St	reet Yarn	nouth	h, M	E 040	096-6	716 Tel	: (2	07)	RY- Chai 846-6569 F	ax: (207)	i stody 346-9066			Sp	ANALYSES Specify Required Method					LABORATORY REPORT
DEDOOR Y		ail: melab	@me	el-lab	.com	We	b: Maine	Env	iron	mentalLabor	atory.com		_		Ш	_	_		\sqcup	_	SAMPLE RECEIVING
S. COMPANY	Villinshi						EMAIL			TELEPHO	ONE		comp.								Within Hold Time? ☐ Yes ☐ No ☐ N. Good Condition?
ADDRESS								BILL T	O / PU	RCHASE ORDER #			250								Preserved?
CAL						SAM	MPLER NAME				QUOTE #		1:51	33							Custody Seal? Yes No No
	SAMPLE IDENTIFICATION		CONTAINERS	TYPE OF CONTAINERS	FIEL		SAMPLE TYPE	GRAB	COMP.	METHOD	SAMI	PLING	s full	AS							Temp. °C
0			00 *		YES	NO	TYPE	ō	ŏ	PRESERVED	DATE	TIME	PFA	G							LAB ID/SUBCONTRACTO
hebe	ague Islan	1	2	P		X	dw	χ		Amm. Acetale	8/20/22	16:30	χ								
Scho	61-64	_	\dashv		Н	+									Н	_	1		Ш	_	
Field	blank		2	P	\vdash	X St	As-free H2O			Amm. Acetate	8/20/22	16:36	Х		Н	+	+	\vdash	H	+	
										recique	9,04,00	10.00					T			+	
			4			-															
		-	+		\vdash	+									+	+	-			+	
			\top										Н		\dashv	+	+	\vdash	\vdash	+	
																+	+		\vdash	+	
						\perp															
URNAR	OUND REQUEST	REPORTI	NG RE	EQUIF	REMEN	ITS?		cor	MME	NTS											
Stan	dard ity (SURCHARGE)	M Standar ME DEF DW Cor	d Rep P EDD mplian	oort) 🗆 ice (se	STUT	тох				has reque	ested th	e fiett	olæn	lh k	e an	ollyze	90	ടധാ	યા.		
LINQUI	SHED BY SAMPLE	CC Res	ults to							DATE	TI	ME	RECE	EIVEI	BY:	MEL	reserv	es the r	right to s	ubcontr	act analyses at MEL's discretion
LINQUI	SHED BY:	ese h	· . E	EA	id	1			***	84/2	,	华:07			BY:	1	1				26-122 114
	SHED BY: Of 25 the cliept's res	1.				11	2 82	1/2	203	DATE	Jan TI	ME.	REC	EIVEI	BYL	ABORA	TORY	in		5/1	8/25/22 140